Broad-Band High-Power Amplifier Using Spatial Power-Combining Technique

نویسندگان

  • Pengcheng Jia
  • Angelos Alexanian
چکیده

High power, broad bandwidth, high linearity, and low noise are among the most important features in amplifier design. The broad-band spatial power-combining technique addresses all these issues by combining the output power of a large quantity of microwave monolithic integrated circuit (MMIC) amplifiers in a broad-band coaxial waveguide environment, while maintaining good linearity and improving phase noise of the MMIC amplifiers. A coaxial waveguide was used as the host of the combining circuits for broader bandwidth and better uniformity by equally distributing the input power to each element. A new compact coaxial combiner with much smaller size is investigated. Broad-band slotline to microstrip-line transition is integrated for better compatibility with commercial MMIC amplifiers. Thermal simulations are performed and an improved thermal management scheme over previous designs is employed to improve the heat sinking in high-power application. A high-power amplifier using the compact combiner design is built and demonstrated to have a bandwidth from 6 to 17 GHz with 44-W maximum output power. Linearity measurement has shown a high third-order intercept point of 52 dBm. Analysis shows the amplifier has the ability to extend spurious-free dynamic range by 2 3 times. The amplifier also has shown a residual phase floor close to 140 dBc at 10-kHz offset from the carrier with 5–6-dB reductions compared to a single MMIC amplifier it integrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis and Design of High Gain, and Low Power CMOS Distributed Amplifier Utilizing a Novel Gain-cell Based on Combining Inductively Peaking and Regulated Cascode Concepts

In this study an ultra-broad band, low-power, and high-gain CMOS Distributed Amplifier (CMOS-DA) utilizing a new gain-cell based on the inductively peaking cascaded structure is presented. It is created bycascading of inductively coupled common-source (CS) stage and Regulated Cascode Configuration (RGC).The proposed three-stage DA is simulated in 0.13 μm CMOS process. It achieves flat and high ...

متن کامل

Nonlinear Analysis of a Power Amplifier inc C Band and Load Pull Technique Calculation USING VOLTERRA SERIES

In recent years, nonlinear circuit analysis techniques have been extensively investigated. One of the most important reasons is the application development of solid-state devices at microwave frequencies. Different methods have been used to analysis large signal behavior of these devices. In this paper load-pull curves (one of design requirement) are obtained using Volterra series. The main adv...

متن کامل

Non-linear modeling, analysis, design and simulation of a solid state power amplifier based on GaN technology for Ku band microwave application

A new non-linear method for design and analysis of solid state power amplifiers is presented and applied to an aluminum gallium nitride, gallium nitride (AlGaN-GaN) high electron-mobility transistor (HEMTs) on silicon-carbide (SiC) substrate for Ku band (12.4 13.6 GHz) applications. With combining output power of 8 transistors, maximum output power of 46.3 dBm (42.6 W), PAE of 43% and linear ga...

متن کامل

Effective Design of a 3×4 Two Dimensional Distributed Amplifier Based on Gate Line Considerations

In this paper two dimensional wave propagation is used for power combining in drain nodes of a distributed amplifier (DA). The proposed two dimensional DA uses an electrical funnel to add the currents of drain nodes. The proposed structure is modified due to gate lines considerations. Total gain improvement is achieved by engineering the characteristic impedance of gate lines and also make appr...

متن کامل

A W-band Simultaneously Matched Power and Noise Low Noise Amplifier Using CMOS 0.13µm

A complete procedure for the design of W-band low noise amplifier in MMIC technology is presented. The design is based on a simultaneously power and noise matched technique. For implementing the method, scalable bilateral transistor model parameters should be first extracted. The model is also used for transmission line utilized in the amplifier circuit. In the presented method, input/output ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001